M1.(a)

breaking stress	1
stiffness constant, k	
tensile strain	
tensile stress	
Young modulus	~

1

1

(b) (i) elastic limit ✓ only one attempt at the answer is allowed

(ii) (*E* = 300 × 10⁶ / 4 × 10⁻² = 7.5 × 10⁹)
 7.5 (Pa) ✓ allow 7.4 to 7.6 (Pa)
 × 10⁹ ✓
 first mark is for most significant digits ignoring the power of 10. E.g. 7500 gains mark

2

(c) <u>straight line</u> beginning on existing line at a strain of 0.10 and hitting the strain axis at a lower non-zero value ✓
 line that ends on the x -axis with strain between 0.045 and 0.055 ✓ (only allow if first mark is given)
 ie accuracy required ± *one division*

2

1

- (d) 8.99 × 10⁻³ (m³) ✓ condone 1 sig fig allow 9.00 × 10⁻³
- (e) $0.9872 \times 8.99 \times 10^{-3} \text{ or} = 8.8749 \times 10^{-3} \text{ (m}^{3}) \checkmark$ allow CE from 4d

2

1

1

tensile stress

M2.(a) Use of Young Modulus = tensile strain ✓

The first mark is for calculating the tensile stress

To give tensile stress = $2 \times 10^{11} \times 3.0 \times 10^{4} = 6.0 \times 10^{7}$ *The second mark is substituting into the tensile force equation*

tensile force

Use of tensile stress = Cr

cross sectional area

To give tensile force = $6.0 \times 10^7 \times 7.5 \times 10^3 = 4.5 \times 10^5$ N \checkmark The third mark is for the correct answer

(b) Use of strain = extension / original length

To give extension = $3.0 \times 10^{4} \times 45 = 1.4 \times 10^{-2} \text{ m}$

 (1.35×10^2) \checkmark The first mark is for calculating the extension

1

1

Use of energy stored = $\frac{1}{2}$ F e

To give

	Energy stored = $\frac{1}{2} \times 4.5 \times 10^5 \times 1.4 \times 10^{-2}$	
	$= 3.2 \times 10^{3} \text{ J} \checkmark$	
	(3.04 × 10 ³) The second mark is for the final answer	1
(c)	Temperature change = pre-strain / pre-strain per ${ m K}$	
	= 3.0 × 10 ⁴ / 2.5 × 10 ⁵ = 12 K \checkmark The first mark is for the temperature change	1
	Temperature = 8°C + 12 = 20 °C ✓ The second mark is for the final answer	1
(d)	So that the rail is not always under stress \checkmark	1
	as the rail spends little time at the highest temperature \checkmark Or	
	To reduce the average stress the rail is under \checkmark	
	as zero stress will occur closer to average temperature / the rail will be under compressive / tensile stress at different times \checkmark	1
6.5 × 10	0 ¹⁰ Pa ✓	1

[9]

1

(b) kg $m^{-1} s^{-2} \checkmark$

M3.(a)

(c) Direction of movement of particles in transverse wave perpendicular to energy propagation direction ✓

1

1

1

1

Parallel for longitudinal 🗸

(d) $\rho_1 c_1 = \rho_2 c_2 \checkmark$

$$E = \rho c^2$$
 or $\rho c = \frac{E}{c}$ seen

$$\left[\frac{E_1}{c_1} = \frac{E_2}{c_2}\right]$$

(e)
$$\frac{\rho_x}{[\rho_y] = \frac{c_y}{c_x}}$$
 and $c_x = 2c_y$]
0.5 \checkmark

(f) speed of the wave in seawater is less than speed of the wave in glass \checkmark

argument to show that water n_{gass} 1 so tir could be observed when wave moves from water to glass \checkmark 1 [10]

M4.C

M5.(a) P at the end of linear section \checkmark

1		

1

1

1

1

1

1

1

(b) Measure original length and diameter \checkmark

Determine gradient of linear section to obtain F / extension \checkmark

$$E = \frac{F}{e} \times \frac{length}{\pi \left(\frac{d}{2}\right)^2} \checkmark$$

(c) Line from A

Parallel to straight section of original

Ending at horizontal axis \checkmark

(d) Plastic deformation has produced permanent extension / re-alignment of bonds in material hence intercept non-zero ✓

Gradient is same because after extension identical forces between bonds \checkmark

(e) 0.2% is a strain of 0.002

Stress = 2.0 x 10¹¹ x 0.002 =

$$Force\left(=\frac{\pi\left(6\times10^{-3}\right)^2}{4}\times4\times10^8\right)\checkmark$$

1

(f)	Maximum force = 11300 N	
	Weight of mass = 600 x 9.81 = 5886 N ✓	1
	Accelerating force must be less than	
	11300 – 5886 = 5423 N ✓	1
	<i>a</i> (= <i>F</i> / <i>m</i> = 5423 / 600)	
	= 9.0 m s ⁻² ✓	1

(g) To lift double the load at the same acceleration, would require double the force, \checkmark

The first mark is for discussing the effect on the force

To produce the same strain either use:

- double the cross sectional area of wire so the stress stays the same and therefore the strain is the same for the same wire, ✓
- a wire with double the Young modulus so that double the stress produces the same strain for the same diameter. ✓

The other two are for discussing the two alternative methods of keeping the strain the same

[16]

1

1

1